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Abstract

In this paper, supercritical ¯ow stability in a single-channel, natural-convection loop is examined using a non-linear

numerical code. A theoretical stability criterion is also developed to verify the numerical prediction. Good agreement

between the numerical and analytical results was obtained. The mode of instability identi®ed is purported to be di�erent

from the traditional instabilities associated with two-phase ¯ow. The understanding derived is discussed. Ó 2001

Elsevier Science Ltd. All rights reserved.

1. Introduction

CANDU-X [1] is one of the advanced reactor con-

cepts presently being assessed at AECL. This new gen-

eration of reactor will contain more inherent safety

features and is expected to signi®cantly reduce unit en-

ergy cost. The primary coolant presently being consid-

ered is light water and the pressure, designed to be at

25 MPa, is in the supercritical range. The higher core

coolant temperature is aimed at improving thermo-

dynamic e�ciency. Both forced and natural-convection

modes for the primary circuit are under consideration.

Flow instability at subcritical ¯ow conditions has re-

ceived considerable, in-depth study by many investiga-

tors. Flow instability at supercritical conditions,

however, has not been investigated to a similar degree,

likely because existing nuclear reactors and most fossil

power stations operate at subcritical ¯ow conditions.

An important safety feature being considered in this

design is the removal of the core heat through natural

circulation. Thus, stable natural-convection ¯ow is a

design pre-requisite. Flow instability, if it does occur in

supercritical ¯uid ¯ow, must be accurately predicted and

circumvented through e�ective, defensible means. The

®rst phase of this study, therefore, is an investigation of

the supercritical ¯ow stability of a single-channel, nat-

ural-circulation loop.

The ®ndings described here were obtained from sim-

ulations with a non-linear numerical stability code. An

analytical model of supercritical ¯ow instability in an

idealized single-channel, natural-convection con®gura-

tion is also developed and the understanding derived is

discussed.

2. Problem de®nition

To help de®ne the problem, a simple, single-channel,

natural-convection con®guration was chosen for study.

It is described as follows.

The con®guration is a constant area loop, shown in

Fig. 1 with dimensions. It is essentially a closed system,

with sides BC and DA vertical and sides AB and CD

horizontal. The boundary conditions are as follows: the

inlet and outlet pressures are constant and equal, and

the inlet temperature is constant. These boundary con-

ditions can be achieved in practice by connecting the

inlet and outlet to a pressurizer, or to a surge tank. The

pressurizer will therefore comprise another degree of

freedom.
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An inlet pressure of 25 MPa and an inlet temperature

of 350°C were imposed. A distributed heat source was

applied along the lower horizontal leg AB and a dis-

tributed heat sink was applied along the upper hori-

zontal leg CD. Friction factors are given in Fig. 1, and

they were the e�ective net friction factor that also in-

cludes the obstruction loss coe�cient. A constant and

axially uniform heat ¯ux was assumed. Hence any

temperature dependency on the wall-®lm thermal con-

ductivity is ignored.

This system was analyzed ®rst with the SPORTS [2]

thermalhydraulic stability code. The derived steady-state

solution of this natural-convection system is shown in

Fig. 2(a). The ¯ow rate initially increases with power,

attains a maximum at about 3.8 MW, and then de-

creases with power. It is usual for a natural-convection-

driven ¯ow to increase with power, but the decrease in

¯ow rate with increasing power was a surprising result.

Such an occurrence had not previously been obtained

from numerical calculations of subcritical (two-phase)

¯ows.

Some SPORTS stability simulations of these steady-

state solutions were also performed. The results are

shown in Fig. 2(b) for three di�erent powers: 4.0, 4.5 and

5.0 MW. The 4.0 MW response, which is close to the

peak of the steady-state pro®le in Fig. 2(a), is stable,

while the 4.5 and 5.0 MW responses are unstable, with

the 5.0 MW being more unstable than the 4.5 MW re-

sponse.

The positive slope of the ¯ow-power characteristic

comprises the stable solutions, while the negative slope

comprises the unstable solutions. The power corre-

sponding to the maximum ¯ow rate, of the ¯ow-power

characteristic, therefore approximately de®nes the

bounding power, Qb, for stable operation.

3. The SPORTS code

The SPORTS non-linear code [2] was originally de-

veloped to investigate the stability of ¯ows at low

pressure due to subcooled boiling, and to perform

transient simulations of thermalhydraulic and neutron-

kinetic coupled dynamics. As the general 1-D con-

servation equations are solved using a fully implicit

Nomenclature

A ¯ow area (m2)

D hydraulic diameter (m)

f friction factor

G mass ¯ux (kg/m2/s)

Gm maximum mass ¯ux (kg/m2/s)

g gravitation constant (m/s2)

h ¯uid enthalpy (kJ/kg)

h1 cold-side enthalpy (kJ/kg)

h2 hot-side enthalpy (kJ/kg)

h2b
hot-side enthalpy at the maximum mass ¯ux

(kJ/kg)

ht height of loop (m)

p static pressure (N/m2)

Q total channel power (kW)

Qb power at the maximum mass ¯ux (kW)

z axial distance (m)

Non-dimensional variables

G� non-dimensional mass ¯ux

G�m non-dimensional maximum mass ¯ux

Q�b non-dimensional bounding power

R� non-dimensional density

Greek symbols

q ¯uid density (kg/m3)

q1 cold-side density upstream of heater (kg/m3)

q2 hot-side density (kg/m3)

q3 ¯uid density downstream of heat sink (kg/m3)

q2b
hot-side density at the maximum mass ¯ux

(kg/m3)

b inclination to the horizontal (degree)

h f2z2=�f1z1 � f3z3�
n

������������
2gDht
p

=f2z2 �m=s�
U ÿh�

�������������
h2 � h

p

Fig. 1. Schematic of loop.
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numerical algorithm, the code was deemed suitable for

modeling supercritical ¯ow stability providing the built-

in algorithms remained numerically sound and conver-

gent for the supercritical properties. SPORTS numerical

algorithms circumvented the use of property derivatives.

This may be of advantage in computations near the

critical point, where some ¯uid properties vary consid-

erably with temperature.

The SPORTS code determines ¯ow instability by in-

troducing a perturbation in the inlet ¯ow rate and exe-

cuting a real-time transient. If the system is stable, the

perturbation will diminish with time and vanish, re-

storing the original steady-state solution. If the system is

unstable, the perturbation will grow, precipitating ¯ow

oscillations, or a ¯ow excursion, and the initial steady

state will not be recovered.

The SPORTS code has been formerly su�ciently

benchmarked against two-phase instability experiments

[3,4] and natural-circulation ¯ows. However, it has not

been benchmarked against supercritical-¯ow instability

experiments. The STEAM [5] property package, which is

valid in the supercritical range, was implemented into

the SPORTS code for the simulations presented here.

4. Analytical model of ¯ow instability

To develop an analytical model of the observed phe-

nomenon, the simple con®guration de®ned in Fig. 1 is

considered, but with the following modi®cation: the heat

source and sink, instead of being uniformly distributed

along sides AB and CD, were assumed to be point

sources situated at the middle of sides AB and CD. This

helped to simplify the analysis and facilitates a better

understanding of the underlying physics. For an axially

uniform heat ¯ux, the enthalpy distribution along the

heated length would be linear, while the temperature

distribution, and hence also the density distribution,

would be highly non-linear due to their characteristics

across the critical temperature. This would pose a

problem in the spatial integration of the density terms

(of the momentum equation) in an analytical derivation.

Fig. 2. (a) Steady-state solution of loop (Fig. 1) with distributed source and sink. (b) SPORTS stability simulation of loop (Fig. 1) with

distributed source and sink.
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This problem was circumvented by assuming point

sources for the heat source and heat sink.

The corresponding SPORTS steady-state solution for

this con®guration is shown in Fig. 3(a) and the stability

simulation is shown in Fig. 3(b). The steady-state ¯ow

versus power characteristic, for a point heat source and

sink is qualitatively similar to that of a distributed heat

source and sink (Fig. 2), except that the peak ¯ow rate in

Fig. 4 now occurs at a power of about 3.2 MW, instead

of at 3.8 MW. In other words, the point heat source and

sink approximation merely reduces the power at which

the maximum ¯ow rate occurs.

The works of Whittle and Forgan [6], Du�ey and

Hughes [7,8] and Rohatgi and Du�ey [9] have shown

that the instability boundary of two-phase (subcritical)

¯ow can be analytically approximated by solving the

system steady-state equations for the minimum zero

slope of the Dp-¯ow characteristic (i.e., where Dp attains

a minimum with the ¯ow rate), and using this solution to

obtain the ¯ow conditions at the instability boundary.

A comparison of the Du�ey and Hughes [8] analytical

model against various data sets yielded good agreement.

This con®rmed that the minimum zero slope of the Dp-

¯ow characteristic is a bona®de approximation for the

stability boundary of two-phase ¯ow. Any di�erences

between theory and experiment were attributed to the

omission of non-equilibrium e�ects in the Du�ey and

Hughes model. For the traditional two-phase ¯ow

Fig. 4. Density versus enthalpy �T � 376±500°C�.

Fig. 3. (a) Steady-state solution of loop (Fig. 1) with point source and sink. (b) SPORTS stability simulation of loop (Fig. 1) with point

source and sink.
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(subcritical) situation, the system is unstable on the

negative slope of the Dp-¯ow characteristic.

For supercritical ¯uid ¯ow in natural-convection,

single-channel systems, Dp from the system inlet to

outlet is ®xed, and hence constant, for all steady-state

¯ow rates. Hence, the minimum zero slope of the Dp-

¯ow characteristic is meaningless for this con®guration,

and a di�erent criterion is required to derive the insta-

bility boundary from the system steady-state character-

istics.

It is hereby postulated that the instability boundary

for a single-channel, natural-circulation loop at super-

critical conditions can be approximated by the criterion

o�flow�
o�Q� � 0; �1�

where Q is the channel power. I emphasize here that,

from a strict mathematical sense, Eq. (1) is an approxi-

mation used to obtain the stability boundary, and is not

an exact criterion. The accuracy of this approximation is

not known, but from an engineering perspective, this

approximation may be acceptable and useful for ob-

taining an analytical solution by which insights can be

gleaned.

Dispensing with the usual practice of proving that this

occurs at a maximum, and not a minimum, since the

steady-state characteristic (Fig. 2(a)) shows that the zero

slope occurs only at a maximum, the constant area loop

(Fig. 1) with point heat source and sink is now consid-

ered. The steady-state continuity equation gives

Mass flux; G � constant: �2�
The momentum equation for steady state is

o
oz
�G2=q� � ÿ op

oz
� qg sinbÿ f

2D
�G2=q�;

where b � 0 for horizontal ¯ow, 90° for down¯ow and

ÿ90° for up¯ow. As before, f is the net e�ective friction

factor, which includes the obstruction loss coe�cient.

Integrating the momentum equation around the closed

loopI
qg sinb dz �

I
f

2D
G2

q

� �
dz:

Assuming that the heat source and sink are of equal

magnitude, q1 is the unheated (cold) density, q2 the

heated (hot) density, z1 the cold length from the loop

entrance to the heat source, f1 the corresponding friction

factor, z2 the hot length between the heat source and

sink, f2 the corresponding friction factor, z3 the cold

length downstream of the heat sink to the end of the

loop and f3 is the corresponding friction factor. Then

g�q1 ÿ q2�ht � G2

2D
f1z1 � f3z3

q1

�
� f2z2

q2

�
;

or

G2 � 2Dght�q1 ÿ q2�
��f1z1 � f3z3�=q1� � �f2z2=q2�f g : �3�

The energy equation gives

Q � GA�h2 ÿ h1� �4�
and the equation of state is assuming that there is no

signi®cant pressure dependence

q2 � f �h2�: �5�
Di�erentiating Eq. (3) with respect to q2 and ignoring

the dependency of the friction factor on q2 and tem-

perature gives

oG
oq2

� G
f2z2 G=q2� �2 ÿ 2gDht

4gDht�q1 ÿ q2�

" #
: �6�

Di�erentiating Eq. (4) with respect to G

oQ
oG
� A�h2 ÿ h1� � GA

oh2

oG

� Q
G
� GA

oh2

oq2

� �
oG
oq2

� ��
: �7�

Combining Eqs. (6) and (7) and simplifying gives

oG
oQ
�

f2z2�G=q2�2ÿ2gDht

Q=G� �ff2z2�G=q2�2ÿ2gDhtg�4A oh2=oq2� �gDht�q1ÿq2�
:

�8�
In Eq. (8), oG=oQ � 0, when

Gm

q2b

 !2

� 2gDht

f2z2

� n2;

or

Gm � q2b
n; where n2 � 2gDht

f2z2

; �9�

where Gm is the maximum value of the mass ¯ux for a

given geometry and q2b
is the corresponding hot-side

density at that mass ¯ux. To derive the corresponding

power at the stability boundary, Qb, the following sim-

pli®ed state relation is introduced for the hot side:

q2 �
B

hg2

2

: �10�

The constants B and g2 can be deduced by plotting h2

versus q2 on log±log plots and determining the slope

(this gives g2) and ordinate intersection (this gives B).

Of course, B and g2 may vary with pressure and

temperature range, but the above form is a realistic

representation that has proven to be useful for this

V. Chatoorgoon / International Journal of Heat and Mass Transfer 44 (2001) 1963±1972 1967



analysis. Fig. 4 plots q2 versus h2 at 25 MPa and for the

temperature range 376±500°C. To a very good approx-

imation, logq versus logh is linear in the temperature

range of interest. Fig. 4 yields B � 1:7418� 1023 and

g2 � 3:277.

From the energy equation (4)

Qb � GmA�h2b
ÿ h1�: �11�

Using Eq. (10)

Qb � GmA
B
q2b

 !1=g2

0@ ÿ h1

1A: �12�

Eq. (3) becomes, at the stability boundary

Gm

n

� �2

� �q1 ÿ Gm=n�
�1=hq1� � �n=Gm� ; �13�

where

h � f2z2

f1z1 � f3z3

: �14�

Rearranging Eq. (13) gives

1

hq1

� �
Gm

n

� �2

� 2
Gm

n

� �
ÿ q1 � 0; �15�

which is a quadratic equation with two roots. Solving

Eq. (15) for the two roots gives

Gm

n

� �
�
n
ÿ h�

�������������
h2 � h

p o
q1: �16�

Of the two roots, only the one corresponding to a pos-

itive �Gm=n� is relevant; hence

Gm

n

� �
� q1U; �17�

where

U � ÿh�
�������������
h2 � h

p
; �18�

) Gm � nq2b
� nq1U; ) q2b

� q1U �19a�

and

h2b
� B

q1U

� �1=g2

: �19b�

Substituting Eqs. (17) and (19a) into Eq. (12) gives

Qb � Aq1nU
B

q1U

� �1=g2

"
ÿ h1

#
: �20�

Eq. (20) de®nes the approximate power at the stability

boundary, Qb, as a function of inlet conditions and loop

geometry for a single-channel, natural-circulation sys-

tem with supercritical ¯ow. Note that Eq. (20) no longer

contains the ¯ow rate or hot-side conditions. This is

expected, since the power uniquely de®nes the ¯ow rate

and outlet conditions of a natural-circulation system

with given geometric characteristics. While Eq. (20) was

developed for a point heat source and sink, it is believed

that the trends described would apply equally for a

distributed heat source and sink.

4.1. Normalizing

For convenience, the additional non-dimensional pa-

rameters G, G�m;Q
�
b and R� are introduced, where

G� � G
q1n

; �21�

G�m �
Gm

q1n
; �22�

Q�b �
Qb

AGmh1

� Qb

Aq1h1nG�m
; �23�

R� � q2=q1: �24�
Thus, the following identities are obtained:

G�2 � �1ÿ R��
1=h� 1=R�� � ; �25�

G�m � U � ÿh�
�������������
h2 � h

p
; �26�

Q�b �
B�

U

� �1=g2

ÿ 1; where B� � B
q1hg2

1

�27�

and

R�b � U �� G�m�: �28�

The non-dimensional parameters, Eqs. (21)±(28), may

be useful for scaling purposes and experimental design.

5. Solution of analytic equations

The analytic equations derived above, for the stability

boundary of supercritical ¯uid ¯ow in a single-channel,

natural-convection loop containing a point heat source

and sink, assumed that the source and sink strengths

were equal in magnitude. Solutions are presented for

some of the derived analytical expressions to facilitate

an understanding of the parametric trends. For the

supercritical cases presented, the inlet temperature was

usually 350°C (unless otherwise stated) and the inlet

pressure was 25 MPa.

When the stability condition, Eq. (9), is satis®ed,

Eq. (6) also yields oG=oq2 � 0. This means that the

maximum ¯ow rate, on the ¯ow-q2 characteristic, also
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coincides with the maximum ¯ow rate on the ¯ow-power

characteristic. Power a�ects q2, which in turn a�ects the

¯ow rate, so this result is not entirely surprising.

Consequently, some insight into the predictions of

Eq. (3), which de®nes the steady ¯ow rate around the

loop, can be gleaned. Decreasing q2, from low power,

say, increases the ¯ow rate initially because of the in-

creasing numerator term �q1 ÿ q2� ± the gravity-driven

term. However, as q2 continues to decrease with in-

creasing power, the increasing frictional term in the

denominator, �f2z2�=q2, dominates at some point, and

the loop mass-¯ow rate begins to decrease after attaining

a maximum. This occurs at supercritical conditions be-

cause of the large thermal expansion rate (rate of change

of speci®c volume with enthalpy) across the critical

point.

The stability relation, Eq. (9), is really a balance be-

tween the gravitational ÔliftÕ force and the frictional

ÔdragÕ force, similar to that discussed by Du�ey and

Hughes [8] for two-phase ¯ow.

Fig. 5 shows the solution of Eq. (27) for the non-di-

mensional ÔboundingÕ power, Q�b, and the non-dimen-

sional friction parameter, h, plotted versus U, R� or G�

for an inlet temperature of 350°C and an inlet pressure

of 25 MPa. As stated previously, the maximum possible

value of U, R� or G� is 0.5. In the region labeled ÔUN-

STABLEÕ, in Fig. 5, the slope of the Ô¯ow versus powerÕ
characteristic is negative and the system will be dy-

namically unstable. In the region labeled ÔSTABLEÕ, the

reverse holds true and the system will be stable.

Figs. 6(a) and (b) depict a similar result, plotted on

di�erent scales for more clarity. Q�b versus h is plotted to

show that the non-dimensional bounding power, Q�b,

decreases monotonically with h. Fig. 6(a) and (b) also

show that U, R� or G� increases monotonically with h to

a maximum value of 0.5.

Fig. 7 shows the e�ect on bounding power of varia-

tions in either f1, or f2, or f3 (one friction factor was

varied while the other two were held constant). The ef-

fect of reducing f2 always increases the bounding power.

However, the e�ect of reducing f1, or f3, may increase or

decrease the bounding power, since the bounding power

®rst increases to a maximum with decreasing friction

factor and then decreases with further decreases in that

friction factor.

The analytical relations derived also indicate that, on

the ¯ow-power characteristic, there is only one maxi-

mum and no true minimum. Numerical results at in-

creasingly higher powers con®rmed this ®nding (results

not shown). As the power was increased beyond Qb, for

a ®xed inlet temperature, the ¯ow rate decreased, and

then leveled o� to almost a constant value with in-

creasing power.

5.1. Parameters a�ecting stability

Eq. (20) gives some useful insight into the parameters

that a�ect Qb, the power at the instability boundary.

Lower inlet temperature. Eq. (20) predicts that de-

creasing the inlet temperature would cause a signi®cant

increase of Qb. Figs. 8(a) and (b) show the e�ect of inlet

temperature on the bounding power, Qb. The bounding

power goes up signi®cantly with lower inlet temperatures.

Flow area. Increasing the ¯ow area, A, and hydraulic

diameter, D, (the latter increases n) would cause an in-

crease in Qb. In addition, f2 would be lowered, which

would contribute to a further increase in n and, hence,

bounding power.

Friction. A reduction in the hot-side friction factor, f2,

would always result in an increase in the bounding

power, similar to two-phase ¯ow instability. However,

an increase in the cold-side friction-factor, f1 or f3,

would not necessarily lead to an increase in the bound-

ing power, as would be the case for two-phase ¯ow

instability. Fig. 7 shows that there could be a decrease

in the bounding power.

Fig. 5. Parameters at stability boundary for p � 25 MPa.
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6. Veri®cation of analytical equations

The con®guration for which the preceding analytical

expressions were derived (Fig. 1, but with a point heat

source at the middle of AB and a heat sink in the middle

of CD) was also simulated using the SPORTS code, to

verify the predictions of the derived analytical relations.

The friction factors were f1 � 0:167, f2 � 0:0567 and

f3 � 0:0381. The hydraulic diameter was 0.0785 m, the

¯ow area was 0.0044 m2, z1 was 3.05 m, z2 was 20.1 m

and z3 was 17.05 m. The vertical height of the loop, ht,

was 14 m.

The SPORTS results, given in Fig. 3(b), shows the re-

sponses for 2.8 and 3.0 MW. The 2.8 MW response

is clearly stable, while the 3.0 MW response is just un-

stable, noting the very sensitive scale used on the ordinate.

The conclusion from this simulation is that 3.0 MW

is just about the stability boundary, according to

SPORTS. Solving the analytical relation, Eq. (20), the

bounding power, Qb, was calculated to be 3.19 MW,

approximately 6% higher than the SPORTS stability

prediction.

This is considered to be good agreement, because of

the following two reasons: (1) the SPORTS model ap-

proximated the point heat source and sink with a single

node of length 0.1 m, rather than a node of zero length

used in the analytical model, and (2) the analytical re-

lations derived above for the stability boundary are only

approximate expressions. Therefore, some discrepancy

between the code prediction and the analytical solution

was expected.

The period of oscillation of the 3.0 MW case was

about 2.0 s. The loop transit time was about 22 s, ap-

proximately 10 times the period of oscillation. This is

signi®cantly di�erent from the period of 6.4 s in Fig. 2

for the same loop, except that the heat source and sink

are distributed along 6.1 m and are not point sources. It

seems that the length of the heated section is an im-

portant parameter for de®ning the period of oscillation.

Other parameters were also tested to assess their e�ect

on the stability boundary, as predicted by the derived

relations. For example, the friction factors �f1; f2; f3�

Fig. 6. (a) Parameters at stability boundary for p � 25 MPa. (b) Parameters at stability boundary for p � 25 MPa.

Fig. 7. E�ect of friction factors on bounding power.
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were altered to maintain a constant h while doubling f2.

Eq. (21) predicted that Qb would be reduced by
���
2
p

.

SPORTS stability simulations con®rmed this trend.

7. Discussion

The good agreement between the numerical and

analytical solutions on the power at the maximum ¯ow

rate rules out any possibility of a numerical artifact

being the cause of the decreasing ¯ow rate with in-

creasing power. Further, assessment showed that the

SPORTSÕ numerical procedure converged well at every

node and that the iteration on the inlet mass-¯ow rate

always converged properly. Spatial convergence was

demonstrated by increasing the number of nodes until

closely similar solutions were obtained.

On the positive slope of the ¯ow-power (or the neg-

ative slope of the ¯ow-q2) characteristic, a positive ¯ow

perturbation at a ®xed power would result in an increase

in outlet (heated) density, which would tend to reduce

the initial ¯ow perturbation and restore the loopÕs
original ¯ow rate.

On the negative slope of the ¯ow-power (or the pos-

itive slope of the ¯ow-q2) characteristic, a positive ¯ow

perturbation at a ®xed power would result in an increase

in outlet (heated) density, which would tend to amplify

the perturbation in the ¯ow rate. Thus, the ensuing re-

sponse would be a divergent one.

The point heat source and sink approximation is ac-

tually conservative, as it yields a lower bounding power

than a distributed heat source and sink. In practice, it

would be more accurate to generate the steady-state

¯ow-power characteristic from a numerical code. It

would also be advisable to include the e�ect of temper-

ature on the friction factor. This e�ect was ignored in

this study.

8. Conclusions and recommendations

A new type of ¯ow instability has been obtained

numerically and analytically for supercritical ¯uid ¯ow

in single-channel, natural-circulation loops. To the

authorÕs knowledge, this type of instability has not been

reported before.

An idealized analytical model of the instability was

developed, which con®rmed the numerical predictions.

It is recommended that experiments be conducted to

con®rm, or deny, this ®nding. It is also recommended

that analyses be performed that includes a variation of

the wall-®lm heat-transfer coe�cient with temperature.

Non-dimensional parameters were derived that would

be useful for scaling purposes, or correlating data. In

Fig. 8. (a) Steady-state solution with point sources at di�erent inlet temperatures. (b) E�ect of inlet temperature on bounding power.
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general, it would be desirable to always operate on the

positive slope of the ¯ow-power (or negative slope of the

¯ow-q2) characteristic.
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